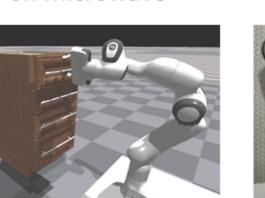


Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations

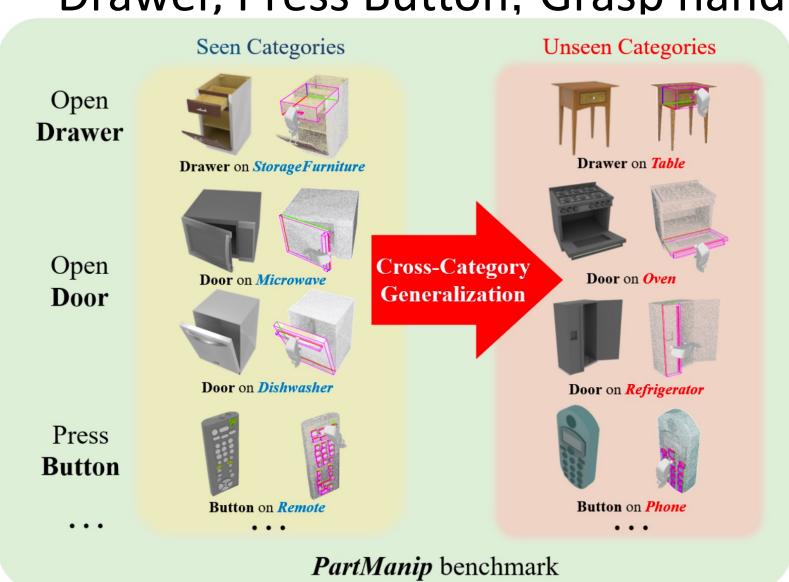
Haoran Geng ^{1,2*} Ziming Li ^{1,2*} Yiran Geng ^{1,2} Jiayi Chen ^{1,3} Hao Dong ^{1,2} He Wang ^{1,2†} ¹CFCS, Peking University ²School of EECS, Peking University ³ Beijing Academy of Artificial Intelligence

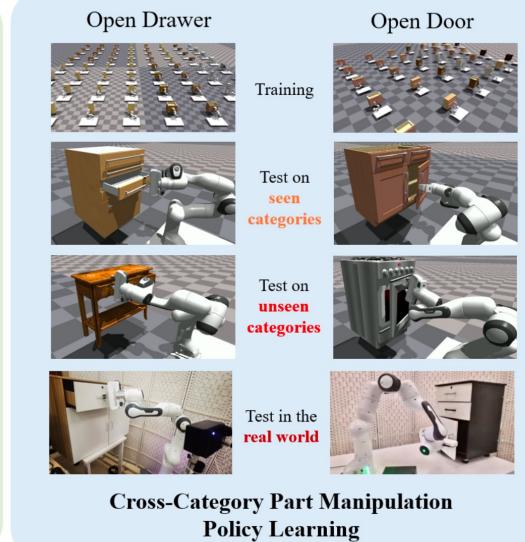

Motivation

Key insight: We humans can successfully manipulate certain types of parts across different objects in a similar way.

In this work, we tackle generalizable part-based manipulation policy learning.

sing Buttons Opening Drawer



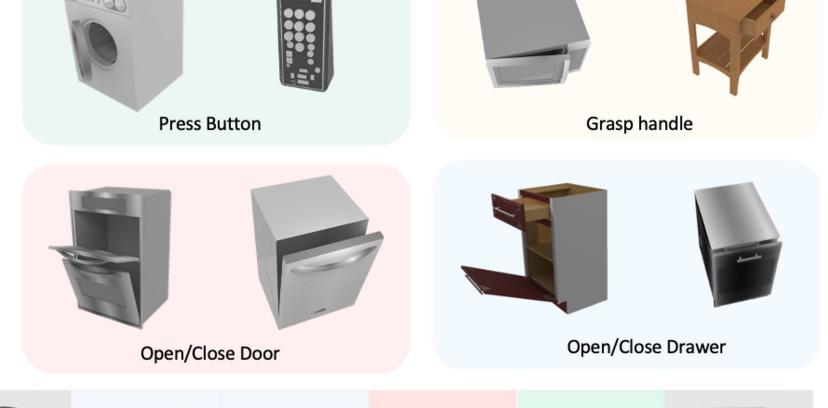

pen Drawer in Simulator

Open Drawer in Real World

Goal: Learning cross-category Manipulation skills via Generalizable and Actionable Parts (GAParts).

Tasks: Cross-category Open/Close Door, Open/Close Drawer, Press Button, Grasp handle

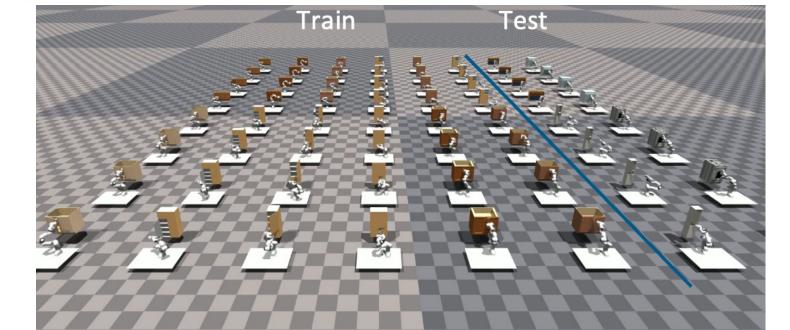
Contribution


Benchmark: The first large-scale, part-based, cross-category object manipulation benchmark, PartManip, is composed of 11 object categories, 494 objects, and 1432 tasks in 6 task classes.

Manipulation: first train a state-based expert with our proposed part-based canonicalization and part-aware rewards, and then distill the knowledge to a vision-based student

Benchmark

Benchmark Statistics

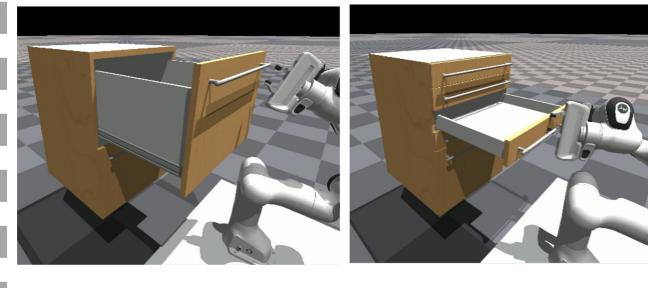

494 objects
11 object categories
Six tasks
1432 different parts
Object Categories in PartManip

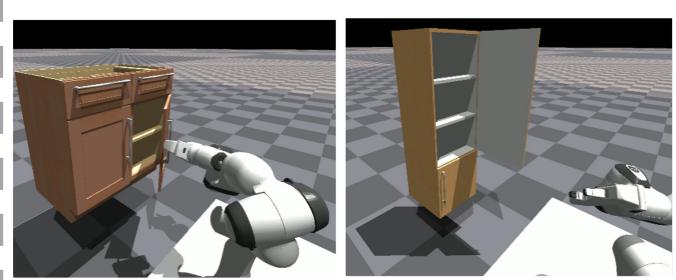


Cross-category Generalization

Training: **Seen** Categories Testing: **Unseen** Categories

Methods

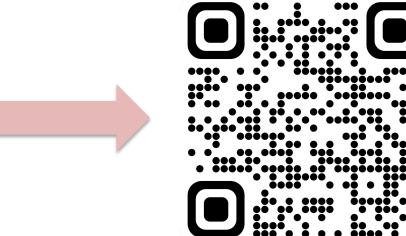

Results


Success rate (%)		OpenDoor	•	OpenDrawer			
				_	Val-Intra		
PPO [35]	4.5±3.8	4.9 ± 3.5	0.2 ± 0.2	$8.9{\pm}2.8$	11.3 ± 2.8	3.3 ± 1.6	
ILAD [48]	13.3 ± 4.9	6.3 ± 2.5	5.0 ± 4.1	18.7 ± 3.6	18.3 ± 2.9	3.3±2.9	
Where2act [24]	25.4 ± 0.1	$23.4 {\pm} 0.0$	15.2 ± 0.1	39.6 ± 0.2	37.2 ± 0.2	20.5 ± 0.1	
SilverBullet3D [26]	54.6±2.5	$49.9\!\pm\!1.0$	$26.9 {\pm} 2.2$	77.7 ± 3.3	60.0 ± 2.0	31.2 ± 5.1	
Shen et. al [38]	1.5 ± 0.6	0.3 ± 0.6	2.3 ± 4.0	9.7 ± 0.5	$18.0 {\pm} 2.2$	2.7 ± 1.9	
Wu et. al [<mark>46</mark>]	45.9 ± 2.3	34.1 ± 3.8	17.8 ± 1.4	70.5 ± 2.2	53.3 ± 3.3	$28.5{\pm}2.4$	
Dubois et. al [5]	35.4 ± 4.4	$25.1{\pm}2.1$	1.3 ± 1.0	61.4 ± 4.3	38.3 ± 2.0	2.7 ± 1.6	
Ours	68.4±1.1	57.2±0.4	49.1±1.5	82.3±2.1	78.7±2.0	54.7±4.2	

Comparison with Baselines.

Success rate (%)	Canon I	DAgger	Augm	S-Unet Pro	Dratrain	etrain DomAdv	Opening Door			Opening Drawer		
					Pretrain		Training	Val-Intra	Val-Inter	Training	Val-Intra	Val-Inter
State-based							67.8±3.4	50.2±1.9	23.4±3.9	71.5±2.1	62.5±2.3	37.5±5.2
Expert	✓						82.2±0.2	$62.5{\pm}2.6$	$\textbf{50.7} \!\pm\! \textbf{4.1}$	92.7±0.9	88.1 ± 1.0	63.4±2.4
							4.5 ± 3.8	4.9 ± 3.5	0.2 ± 0.2	$8.9{\pm}2.8$	11.3 ± 2.8	3.3 ± 1.6
				\checkmark			$0.8 {\pm} 0.5$	$0.4 {\pm} 0.2$	0.0 ± 0.0	5.9 ± 2.3	3.9 ± 0.6	1.0 ± 0.2
		\checkmark					60.3 ± 0.7	49.2 ± 1.1	31.5 ± 2.9	70.9 ± 0.6	62.0 ± 1.1	42.7 ± 1.8
Vision-based		\checkmark		\checkmark			66.8 ± 2.7	$50.2 {\pm} 1.7$	$28.8 {\pm} 2.1$	77.4 ± 2.7	61.9 ± 3.0	36.4 ± 3.3
Student		\checkmark	\checkmark				60.0 ± 1.7	54.4 ± 2.3	40.2 ± 3.9	69.7 ± 2.4	69.8 ± 2.5	49.0 ± 2.1
		\checkmark	\checkmark	\checkmark			65.5 ± 1.5	55.9 ± 2.7	41.7 ± 2.5	74.6 ± 3.4	63.8 ± 4.7	49.1 ± 3.4
		\checkmark	\checkmark		\checkmark		61.1 ± 3.3	55.0 ± 1.2	37.8 ± 2.9	71.9 ± 3.3	72.2 ± 3.5	50.3 ± 2.6
		\checkmark	\checkmark	\checkmark	\checkmark		71.2±1.8	57.0 ± 0.7	37.2 ± 1.2	82.0±3.3	73.8 ± 2.9	48.8 ± 4.5
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	68.4 ± 1.1	$\textbf{57.2} \!\pm\! \textbf{0.4}$	$\textbf{49.1} \!\pm\! \textbf{1.5}$	82.3±2.1	$\textbf{78.7} \!\pm\! \textbf{2.0}$	54.7±4.2

Ablation Study.



In the Real-world

Scan the QR code for more information and to contact us!

