

PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations

CVPR2023

Student: Haoran Geng 🚊 ghr@stu.pku.edu.cn

Advisor: He Wang

hewang@pku.edu.cn

Motivation

Key insight: We humans can successfully manipulate certain types of parts across different objects in a similar way.

In this work, we

Pressing Buttons on Microwave

Opening Drawer on Table

Open Drawer in Simulator

Open Drawer in Real World

Goal: Learning cross-category Manipulation skills via Generalizable and Actionable Parts (GAParts).

Tasks: Cross-category Open/Close Door, Open/Close Drawer, Press Button, Grasp handle

Contribution

Benchmark: The first large-scale, part-based, crosscategory object manipulation benchmark, PartManip, is composed of 11 object categories, 494 objects, and 1432 tasks in 6 task classes.

Manipulation: first train a state-based expert with our proposed part-based canonicalization and part-aware rewards, and then distill the knowledge to a vision-based student

Benchmark

Benchmark Statistics

494 objects
11 object categories
Six tasks
1432 different parts

Cross-category Generalization

Training: Seen Categories
Testing: Unseen

Categories

Object Categories in PartManip

Methods

Part-Aware Reward

State-based Expert Policy

Vision-based Student Policy

Results

Success rate (%)		OpenDoor	•	OpenDrawer				
Success rate (%)	Training	Val-Intra	Val-Inter	Training	Val-Intra	Val-Inter		
PPO [35]	4.5±3.8	4.9 ± 3.5	0.2 ± 0.2	$8.9{\pm}2.8$	11.3 ± 2.8	3.3 ± 1.6		
ILAD [48]	13.3 ± 4.9	6.3 ± 2.5	5.0 ± 4.1	18.7 ± 3.6	18.3 ± 2.9	3.3 ± 2.9		
Where2act [24]	25.4 ± 0.1	$23.4{\pm}0.0$	15.2 ± 0.1	39.6 ± 0.2	37.2 ± 0.2	$20.5 {\pm} 0.1$		
SilverBullet3D [26]	54.6 ± 2.5	49.9 ± 1.0	$26.9 {\pm} 2.2$	77.7 ± 3.3	60.0 ± 2.0	31.2 ± 5.1		
Shen et. al [38]	1.5 ± 0.6	0.3 ± 0.6	2.3 ± 4.0	9.7 ± 0.5	18.0 ± 2.2	2.7 ± 1.9		
Wu et. al [<mark>46</mark>]	45.9 ± 2.3	34.1 ± 3.8	17.8 ± 1.4	70.5 ± 2.2	53.3 ± 3.3	28.5 ± 2.4		
Dubois et. al [5]	35.4 ± 4.4	25.1 ± 2.1	1.3 ± 1.0	61.4 ± 4.3	$38.3 {\pm} 2.0$	2.7 ± 1.6		
Ours	68.4±1.1	57.2±0.4	49.1±1.5	82.3±2.1	78.7±2.0	54.7±4.2		

Comparison with Baselines.

C	uccess rote (%)	Canon	DAgger	Augm	S-Unet	Pretrain DomAdv	Dom A dy	Opening Door			Opening Drawer		
S	iccess rate (%)						DomAdv	Training	Val-Intra	Val-Inter	Training	Val-Intra	Val-Inter
	State-based							67.8±3.4	50.2±1.9	23.4±3.9	71.5±2.1	62.5±2.3	37.5±5.2
	Expert	\checkmark						82.2±0.2	62.5±2.6	$\textbf{50.7} \!\pm\! \textbf{4.1}$	92.7±0.9	$\textbf{88.1} \!\pm\! \textbf{1.0}$	63.4±2.4
								4.5 ± 3.8	4.9 ± 3.5	0.2 ± 0.2	$8.9{\pm}2.8$	11.3 ± 2.8	3.3 ± 1.6
					\checkmark			0.8 ± 0.5	0.4 ± 0.2	0.0 ± 0.0	5.9 ± 2.3	3.9 ± 0.6	1.0 ± 0.2
			\checkmark					60.3 ± 0.7	49.2 ± 1.1	31.5 ± 2.9	70.9 ± 0.6	62.0 ± 1.1	42.7 ± 1.8
	Vision-based		\checkmark		\checkmark			66.8 ± 2.7	50.2 ± 1.7	28.8 ± 2.1	77.4 ± 2.7	61.9 ± 3.0	36.4 ± 3.3
	Student		\checkmark	\checkmark				60.0 ± 1.7	54.4 ± 2.3	40.2 ± 3.9	69.7 ± 2.4	$69.8 {\pm} 2.5$	49.0 ± 2.1
			\checkmark	\checkmark	\checkmark			65.5 ± 1.5	55.9 ± 2.7	$41.7{\pm}2.5$	74.6 ± 3.4	63.8 ± 4.7	49.1 ± 3.4
			\checkmark	\checkmark		\checkmark		61.1 ± 3.3	55.0 ± 1.2	37.8 ± 2.9	71.9 ± 3.3	72.2 ± 3.5	50.3 ± 2.6
			\checkmark	\checkmark	\checkmark	\checkmark		71.2±1.8	57.0 ± 0.7	37.2 ± 1.2	82.0 ± 3.3	73.8 ± 2.9	$48.8 {\pm} 4.5$
			✓	✓	✓	✓	✓	68.4 ± 1.1	57.2±0.4	49.1±1.5	82.3±2.1	78.7±2.0	54.7±4.2

Ablation Study.

In Simulator

Open Door Open Drawer

In the Real-world

Conclusion

We introduce a large-scale part-based cross-category object manipulation benchmark PartManip, with six tasks in realistic settings. To tackle the challenging problem of the generalizable vision-based policy learning, we first introduce a carefully designed state-based part-aware expert learning method, and then a well-motivated state-to-vision distillation process, as well as a domain generalization technique to improve the cross-category generalization ability.

Scan the QR code for more information and to contact us!

