PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations **CVPR2023** Student: Haoran Geng 🚊 ghr@stu.pku.edu.cn Advisor: He Wang hewang@pku.edu.cn ### Motivation Key insight: We humans can successfully manipulate certain types of parts across different objects in a similar way. In this work, we Pressing Buttons on Microwave Opening Drawer on Table Open Drawer in Simulator Open Drawer in Real World Goal: Learning cross-category Manipulation skills via Generalizable and Actionable Parts (GAParts). Tasks: Cross-category Open/Close Door, Open/Close Drawer, Press Button, Grasp handle ### Contribution **Benchmark:** The first large-scale, part-based, crosscategory object manipulation benchmark, PartManip, is composed of 11 object categories, 494 objects, and 1432 tasks in 6 task classes. Manipulation: first train a state-based expert with our proposed part-based canonicalization and part-aware rewards, and then distill the knowledge to a vision-based student #### Benchmark ### **Benchmark Statistics** 494 objects 11 object categories Six tasks 1432 different parts # Cross-category Generalization Training: Seen Categories Testing: Unseen Categories **Object Categories in PartManip** ## Methods **Part-Aware Reward** **State-based Expert Policy** **Vision-based Student Policy** ### Results | Success rate (%) | | OpenDoor | • | OpenDrawer | | | | | |-------------------------------|----------------|----------------|------------------|----------------|------------------|------------------|--|--| | Success rate (%) | Training | Val-Intra | Val-Inter | Training | Val-Intra | Val-Inter | | | | PPO [35] | 4.5±3.8 | 4.9 ± 3.5 | 0.2 ± 0.2 | $8.9{\pm}2.8$ | 11.3 ± 2.8 | 3.3 ± 1.6 | | | | ILAD [48] | 13.3 ± 4.9 | 6.3 ± 2.5 | 5.0 ± 4.1 | 18.7 ± 3.6 | 18.3 ± 2.9 | 3.3 ± 2.9 | | | | Where2act [24] | 25.4 ± 0.1 | $23.4{\pm}0.0$ | 15.2 ± 0.1 | 39.6 ± 0.2 | 37.2 ± 0.2 | $20.5 {\pm} 0.1$ | | | | SilverBullet3D [26] | 54.6 ± 2.5 | 49.9 ± 1.0 | $26.9 {\pm} 2.2$ | 77.7 ± 3.3 | 60.0 ± 2.0 | 31.2 ± 5.1 | | | | Shen et. al [38] | 1.5 ± 0.6 | 0.3 ± 0.6 | 2.3 ± 4.0 | 9.7 ± 0.5 | 18.0 ± 2.2 | 2.7 ± 1.9 | | | | Wu et. al [<mark>46</mark>] | 45.9 ± 2.3 | 34.1 ± 3.8 | 17.8 ± 1.4 | 70.5 ± 2.2 | 53.3 ± 3.3 | 28.5 ± 2.4 | | | | Dubois et. al [5] | 35.4 ± 4.4 | 25.1 ± 2.1 | 1.3 ± 1.0 | 61.4 ± 4.3 | $38.3 {\pm} 2.0$ | 2.7 ± 1.6 | | | | Ours | 68.4±1.1 | 57.2±0.4 | 49.1±1.5 | 82.3±2.1 | 78.7±2.0 | 54.7±4.2 | | | ### Comparison with Baselines. | C | uccess rote (%) | Canon | DAgger | Augm | S-Unet | Pretrain DomAdv | Dom A dy | Opening Door | | | Opening Drawer | | | |---|-----------------|--------------|--------------|--------------|--------------|-----------------|----------|----------------|----------------|--------------------------------------|----------------|--------------------------------------|------------------| | S | iccess rate (%) | | | | | | DomAdv | Training | Val-Intra | Val-Inter | Training | Val-Intra | Val-Inter | | | State-based | | | | | | | 67.8±3.4 | 50.2±1.9 | 23.4±3.9 | 71.5±2.1 | 62.5±2.3 | 37.5±5.2 | | | Expert | \checkmark | | | | | | 82.2±0.2 | 62.5±2.6 | $\textbf{50.7} \!\pm\! \textbf{4.1}$ | 92.7±0.9 | $\textbf{88.1} \!\pm\! \textbf{1.0}$ | 63.4±2.4 | | | | | | | | | | 4.5 ± 3.8 | 4.9 ± 3.5 | 0.2 ± 0.2 | $8.9{\pm}2.8$ | 11.3 ± 2.8 | 3.3 ± 1.6 | | | | | | | \checkmark | | | 0.8 ± 0.5 | 0.4 ± 0.2 | 0.0 ± 0.0 | 5.9 ± 2.3 | 3.9 ± 0.6 | 1.0 ± 0.2 | | | | | \checkmark | | | | | 60.3 ± 0.7 | 49.2 ± 1.1 | 31.5 ± 2.9 | 70.9 ± 0.6 | 62.0 ± 1.1 | 42.7 ± 1.8 | | | Vision-based | | \checkmark | | \checkmark | | | 66.8 ± 2.7 | 50.2 ± 1.7 | 28.8 ± 2.1 | 77.4 ± 2.7 | 61.9 ± 3.0 | 36.4 ± 3.3 | | | Student | | \checkmark | \checkmark | | | | 60.0 ± 1.7 | 54.4 ± 2.3 | 40.2 ± 3.9 | 69.7 ± 2.4 | $69.8 {\pm} 2.5$ | 49.0 ± 2.1 | | | | | \checkmark | \checkmark | \checkmark | | | 65.5 ± 1.5 | 55.9 ± 2.7 | $41.7{\pm}2.5$ | 74.6 ± 3.4 | 63.8 ± 4.7 | 49.1 ± 3.4 | | | | | \checkmark | \checkmark | | \checkmark | | 61.1 ± 3.3 | 55.0 ± 1.2 | 37.8 ± 2.9 | 71.9 ± 3.3 | 72.2 ± 3.5 | 50.3 ± 2.6 | | | | | \checkmark | \checkmark | \checkmark | \checkmark | | 71.2±1.8 | 57.0 ± 0.7 | 37.2 ± 1.2 | 82.0 ± 3.3 | 73.8 ± 2.9 | $48.8 {\pm} 4.5$ | | | | | ✓ | ✓ | ✓ | ✓ | ✓ | 68.4 ± 1.1 | 57.2±0.4 | 49.1±1.5 | 82.3±2.1 | 78.7±2.0 | 54.7±4.2 | # **Ablation Study.** In Simulator Open Door Open Drawer In the Real-world Conclusion We introduce a large-scale part-based cross-category object manipulation benchmark PartManip, with six tasks in realistic settings. To tackle the challenging problem of the generalizable vision-based policy learning, we first introduce a carefully designed state-based part-aware expert learning method, and then a well-motivated state-to-vision distillation process, as well as a domain generalization technique to improve the cross-category generalization ability. Scan the QR code for more information and to contact us!